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S1. FURTHER QUANTITIES RELATED TO THE QUANTILE CROSS-SPECTRAL
DENSITY KERNEL

In the situation described in this paper, there exists a right continuous orthogonal incre-
ment process {Zτj (ω) : −π ≤ ω ≤ π}, for every j ∈ {1, . . . , d} and τ ∈ [0, 1], such that
the Cramér representation

I{Xt,j ≤ qj(τ)} =

∫ π

−π
eitωdZτj (ω)

holds [cf., e. g., Theorem 1.2.15 in Taniguchi and Kakizawa (2000)]. Note the fact that
(Xt,j)t∈Z is strictly stationary and therefore (I{Xt,j ≤ qj(τ)})t∈Z is second-order sta-
tionary, as the boundedness of the indicator functions implies existence of their second
moments.

The quantile cross-spectral density kernels are closely related to these orthogonal in-
crement processes [cf. (Brillinger, 1975, p. 101) and (Brockwell and Davis, 1987, p. 436)].
More specifically, for −π ≤ ω1 ≤ ω2 ≤ π, the following relation holds:∫ ω2

ω1

fj1,j2(ω; τ1, τ2)dω = Cov
(
Zτ1j1 (ω2)− Zτ1j1 (ω1), Zτ2j2 (ω2)− Zτ2j2 (ω1)

)
,

or shortly: fj1,j2(ω; τ1, τ2) = Cov(dZτ1j1 (ω),dZτ2j2 (ω)). It is important to observe that

fj1,j2(ω; τ1, τ2) is complex-valued. One way to represent fj1,j2(ω; τ1, τ2) is to decompose
it into its real and imaginary part. The real part is known as the cospectrum (of the
processes (I{Xt,j1 ≤ qj1(τ1)})t∈Z and (I{Xt,j2 ≤ qj2(τ2)})t∈Z). The negative of the imag-
inary part is commonly referred to as the quadrature spectrum. We will refer to these
quantities as the quantile cospectrum and quantile quadrature spectrum of (Xt,j1)t∈Z
and (Xt,j2)t∈Z. Occasionally, to emphasise that these spectra are functions of (τ1, τ2), we
will refer to them as the quantile cospectrum kernel and quantile quadrature spectrum
kernel, respectively. The quantile quadrature spectrum vanishes if j1 = j2 and τ1 = τ2.
More generally, as described in Kley et al. (2016), for any fixed j1, j2, the quadrature
spectrum will vanish, for all τ1, τ2, if and only if (Xt−k,j1 , Xt,j2) and (Xt+k,j1 , Xt,j2)
possess the same copula, for all k.
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Table S.1. Spectral quantities related to fj1,j2(ω; τ1, τ2) .

Name Symbol

quantile cospectrum of (Xt,j1)t∈Z and (Xt,j2)t∈Z <fj1,j2(ω; τ1, τ2)
quantile quadrature spectrum of (Xt,j1)t∈Z and (Xt,j2)t∈Z -=fj1,j2(ω; τ1, τ2)
quantile amplitude spectrum of (Xt,j1)t∈Z and (Xt,j2)t∈Z |fj1,j2(ω; τ1, τ2)|
quantile phase spectrum of (Xt,j1)t∈Z and (Xt,j2)t∈Z arg(fj1,j2(ω; τ1, τ2))
quantile coherency of (Xt,j1)t∈Z and (Xt,j2)t∈Z Rj1,j2(ω; τ1, τ2)
quantile coherence of (Xt,j1)t∈Z and (Xt,j2)t∈Z |Rj1,j2(ω; τ1, τ2)|2

Note: The quantile cross-spectral density kernel fj1,j2 (ω; τ1, τ2) of (Xt,j1 )t∈Z and (Xt,j2 )t∈Z is defined
in (??).

An alternative way to look at fj1,j2(ω; τ1, τ2) is by representing it in polar coordi-
nates. The radius |fj1,j2(ω; τ1, τ2)| is then referred to as the amplitude spectrum (of
the two processes (I{Xt,j1 ≤ qj1(τ1)})t∈Z and (I{Xt,j2 ≤ qj2(τ2)})t∈Z), while the angle
arg(fj1,j2(ω; τ1, τ2)) is the so called phase spectrum, respectively. We refer to these quanti-
ties as the quantile amplitude spectrum and the quantile phase spectrum of (Xt,j1)t∈Z and
(Xt,j2)t∈Z. We note that the quantile spectral distribution function

∫ ω
0
fj1,j2(λ; τ1, τ2))dλ

is clearly another way to represent the quantile-based dependence in the frequency do-
main. Its properties and estimation procedures are currently investigated in a separate
research project and therefore not further discussed here.

Note that quantile coherency Rj1,j2(ω; τ1, τ2)which we defined in Section ?? as a mea-
sure for the dynamic dependence of the two processes (Xt,j1)t∈Z and (Xt,j2)t∈Z is the
correlation between dZτ1j1 (ω) and dZτ2j2 (ω). Its modulus squared |Rj1,j2(ω; τ1, τ2)|2 is
referred to as the quantile coherence kernel of (Xt,j1)t∈Z and (Xt,j2)t∈Z. A value of
|Rj1,j2(ω; τ1, τ2)| close to 1 indicates a strong (linear) relationship between dZτ1j1 (ω) and
dZτ2j2 (ω).

For the readers convenience, a list of the quantities and symbols introduced in this
section is provided in Table S.1.

Estimators for the quantile cospectrum, quantile quadrature spectrum, quantile am-
plitude spectrum, quantile phase spectrum, and quantile coherence are then naturally
given by <Ĝj1,j2n,R (ω; τ1, τ2), −=Ĝj1,j2n,R (ω; τ1, τ2), |Ĝj1,j2n,R (ω; τ1, τ2)|, arg(Ĝj1,j2n,R (ω; τ1, τ2)),

and |R̂j1,j2
n,R (ω; τ1, τ2)|2, respectively.

S2. AN EXAMPLE OF A PROCESS GENERATING QUANTILE DEPENDENCE
ACROSS FREQUENCIES: QVAR(P )

For a better understanding of the dependence structures that we study in this paper, it
is illustrative to introduce a process capable of generating them. We focus on generating
dependence at different points of the joint distribution, which will vary across frequencies,
but stays hidden from classical measures. In other words, we illustrate the intuition of
spuriously independent variables, a situation when two variables seem to be independent
when traditional cross-spectral analysis is used, while they are indeed clearly dependent
at different parts of their joint distribution.

We base our example on a multivariate generalisation of the popular quantile autore-
gression process (QAR) introduced by Koenker and Xiao (2006). Inspired by vector au-
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toregression processes (VAR), we link multiple QAR processes through their lag structure
and refer to the resulting process as a quantile vector autoregression process (QVAR).
This provides a natural way of generating rich dependence structure between two ran-
dom variables in points of their joint distribution and over different frequencies. The
autocovariance function of a stationary QVAR(p) process is that of a fixed parameter
VAR(p) process. This follows from the argument by Knight (2006), who concludes that
the exclusive use of autocorrelations may thus “fail to identify structure in the data that
is potentially very informative”. We will show how quantile spectral analysis reveals what
otherwise may remain invisible.

Let Xt = (Xt,1, . . . , Xt,d)
′, t ∈ Z, be a sequence of random vectors that fulfills

Xt =

p∑
j=1

Θ(j)(Ut)Xt−j + θ(0)(Ut), (S.1)

where Θ(1), . . . ,Θ(p) are d × d matrices of functions, θ(0) is a d × 1 column vector of
functions, and Ut = (Ut,1, . . . , Ut,d)

′, t ∈ Z, is a sequence of independent vectors, with
components Ut,k that are U [0, 1]-distributed. We will assume that the elements of the

`th row θ
(j)
` (u`) =

(
θ

(j)
`,1(u`), . . . , θ

(j)
`,d(u`)

)
of Θ(j)(u1, . . . , ud) =

(
θ

(j)
1 (u1)′, . . . ,θ

(j)
d (ud)

′)′
and that the `th element θ

(0)
` (u`) of θ(0) =

(
θ

(0)
1 (u1), . . . , θ

(0)
d (ud)

)′
only depend on the

`th variable, respectively. Under this assumption we can rewrite (S.1) as

Xt,i =

p∑
j=1

θ
(j)
i (Ut,i)Xt−j + θ

(0)
i (Ut,i). (S.2)

If the right hand side of (S.2) is monotonically increasing, then the conditional quantile
function of Xt,i given (Xt−1, . . . ,Xt−p) can be represented as

QXt,i(τ |Xt−1, . . . ,Xt−p) =

p∑
j=1

θ
(j)
i (τ)Xt−j + θ

(0)
i (τ).

Note that in this design the `th component of Ut determines the coefficients for the
autoregression equation of the `th component of Xt. We refer to the process as a quantile
vector autoregression process of order p, hence QVAR(p). The class of processes (S.1)
without assumptions regarding the parameters Θ(j) is naturally richer. Yet, the inter-
pretation of the parameters in terms of the conditional quantile functions is possibly
lost.

In the bivariate case (d = 2) of order p = 1, i.e. QVAR(1), (S.1) takes the following
form: (

Xt,1

Xt,2

)
=

(
θ

(1)
11 (Ut,1) θ

(1)
12 (Ut,1)

θ
(1)
21 (Ut,2) θ

(1)
22 (Ut,2)

)(
Xt−1,1

Xt−1,2

)
+

(
θ

(0)
1 (Ut,1)

θ
(0)
2 (Ut,2)

)
.

For the examples we assume that the components Ut,1 and Ut,2 are independent and set

the components of θ(0) to θ
(0)
1 (u) = θ

(0)
2 (u) = Φ−1(u), u ∈ [0, 1], where Φ−1(u) denotes

the u-quantile of the standard normal distribution. Further, we set the diagonal elements

of of Θ(1) to zero (i. e., θ
(1)
11 (u) = θ

(1)
22 (u) = 0, u ∈ [0, 1]) and the off-diagonal elements to

θ
(1)
12 (u) = θ

(1)
21 (u) = 1.2(u − 0.5), u ∈ [0, 1]. We thus create cross-dependence by linking

the two processes with each other through the other ones lagged contributions. Note that
this particular choice of parameter functions leads to the existence of a unique, strictly
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Figure S.1. Example of dependence structures generated by QVAR(1).

stationary solution; cf. Bougerol and Picard (1992). (Xt,1)t∈Z and (Xt,2)t∈Z are uncorre-
lated. Note that Hafner and Linton (2006) discuss that univariate quantile autoregression
nests the popular autoregressive conditional heteroskedasticity (ARCH) models in terms
of second order properties. Analogously, our QVAR(1) can be seen to nest a multivariate
versions of ARCH.

In Figure S.1 the dynamics of the described QVAR(1) process are depicted. In terms of
traditional coherency there appears to be no dependence across all frequencies. In terms
of quantile coherency, on the other hand, rich dynamics are revealed in the different
parts of the joint distribution. While, in the centre of the distribution (at the 0.5|0.5
level) the dependence is zero across frequencies, we see that the dependence increases if
at least one of the quantile levels (τ1, τ2) is chosen closer to 0 or 1. More precisely, we
see that the quantile coherency of this QVAR process resembles the shape of an VAR(1)
process with coefficient matrix Θ(1)(τ1, τ2). The two processes are, for example when
τ1 = 0.05 and τ2 = 0.95, clearly positively connected at lower frequencies with exactly
the opposite value of quantile coherency at high frequencies, where the processes are in
opposition. This also resembles the dynamics of the simple motivating examples from
the introductory section of this paper, and highlights the importance of the quantile
cross-spectral analysis as the dependence structure stays hidden if only the traditional
measures are used.

In a second and third example, we consider a similar structure of parameters at the
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Figure S.2. Example of dependence structures generated by QVAR(2).

second and third lag. For the QVAR(2) process we let θ
(j)
11 (u) = θ

(j)
22 (u) = 0, for j = 1, 2,

θ
(1)
12 (u) = θ

(1)
21 (u) = 0 and θ

(2)
12 (u) = θ

(2)
21 (u) = 1.2(u − 0.5). In other words, here, the

processes are connected through the second lag of the other one and, again, not directly
through their own lagged contributions. In the QVAR(3) process, all coefficients are

again set to zero, except for θ
(3)
12 (u) = θ

(3)
21 (u) = 1.2(u− 0.5), such that the processes are

connected only through the third lag of the other component and not through their own
contributions.

In Figures S.2 and S.3 the dynamics of the described QVAR(2) and QVAR(3) processes
are shown. Connecting the quantiles of the two processes through the second and third
lag gives us richer dependence structures across frequencies. They, again, resemble the
shape of the traditional coherencies of VAR(2) and VAR(3) processes. When traditional
coherency is used for the QVAR(2) and QVAR(3) processes, the dependence structure
stays completely hidden.

These examples of the general QVAR(p) specified in (S.1) served to show how rich
dependence structures can be created across points of the joint distribution and different
frequencies. It is obvious, how more complicated structures for the coefficient functions
would lead to even richer dynamics than in the examples shown.
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Figure S.3. Example of dependence structures generated by QVAR(3).

S3. RELATION BETWEEN QUANTILE AND TRADITIONAL SPECTRAL
QUANTITIES IN THE CASE OF GAUSSIAN PROCESSES

When applying the proposed quantities, it is important to proceed with care when relat-
ing them to the traditional correlation and coherency measures. In this section we exam-
ine the case of a weakly stationary, multivariate process, where the proposed, quantile-
based quantities and their traditional counterparts are directly related. The aim of the
discussion is twofold. On one hand it provides assistance in how to interpret the quantile
spectral quantities when the model is known to be Gaussian. On the other hand, and
more importantly, it provides additional insight in how the traditional quantities break
down when the serial dependency structure is not completely specified by the second
moments.

We start by the discussion of the general case, where the process under consideration is
assumed to be stationary, but needs not to be Gaussian. We will state conditions under
which the traditional spectra (i. e., the matrix of spectral densities and cross-spectral
densities) uniquely determines the quantile spectra (i. e., the matrix of quantile spectral
densities and cross-spectral densities). In the end of this section we will discuss three
examples of bivariate, stationary Gaussian processes and explain how the traditional
coherency and the quantile coherency are related.

Denote by c := {cj1,j2k : j1, j2 ∈ {1, . . . , d}, k ∈ Z}. cj1,j2k := Cov(Xt+k,j1 , Xt,j2),
the family of auto- and cross-covariances. We will also refer to them as the second mo-
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ment features of the process. We assume that (|cj1,j2k |)k∈Z is summable, such that the

traditional spectra f j1,j2(ω) := (2π)−1
∑
k∈Z c

j1,j2
k e−ikω exist. Because of the relation

cj1,j2k =
∫ π
−π f

j1,j2(ω)eikωdω we will equivalently refer to f(ω) := (f j1,j2(ω))j1,j2=1,...,d as
the second moment features of the process.

We now state conditions under which the traditional spectra uniquely determine the
quantile spectra. Assume that the marginal distribution of Xt,j (j ∈ {1, . . . , d}), which
we denote by Fj , does not depend on t and is continuous. Further, the joint distribution of(
Fj1(Xt+k,j1), Fj2(Xt,j2)

)
, j1, j2 ∈ {1, . . . , d}, i. e. the copula of the pair (Xt+k,j1 , Xt,j2),

shall depend only on k, but not on t, and be uniquely specified by the second moment
features of the process. More precisely, we assume the existence of functions Cj1,j2k , such
that

Cj1,j2k

(
τ1, τ2; c

)
= P

(
Fj1(Xt+k,j1) ≤ τ1, Fj2(Xt,j2) ≤ τ2

)
.

Obviously, fj1,j2(ω; τ1, τ2) is then, if it exists, uniquely determined by c [note (??) and
the fact that γj1,j2k (τ1, τ2) = Cj1,j2k

(
τ1, τ2; c

)
− τ1τ2].

In the case of stationary Gaussian processes the assumptions sufficient for the quantile
spectra to be uniquely identified by the traditional spectra hold with

Cj1,j2k

(
τ1, τ2; c

)
:= CGauss(τ1, τ2; cj1,j2k (cj1,j10 cj2,j20 )−1/2),

where we have denoted the Gaussian copula by CGauss(τ1, τ2; ρ).
The converse can be stated under less restrictive conditions. If the marginal distri-

butions are both known and both possess second moments, then the quantile spectra
uniquely determine the traditional spectra.

Assume now the previously described situation in which the second moment features
f uniquely determine the quantile spectra, which we denote by fj1,j2f (ω; τ1, τ2) to stress
the fact that it is determined by f . Thus, the relation between the traditional spectra
and the quantile spectra is 1-to-1. Denote the traditional coherency by Rj1,j2(ω) :=
f j1,j2(ω)/(f j1,j1(ω)f j2,j2(ω))1/2 and observe that it is also uniquely determined by the
second moment features f . Because the quantile coherency is determined by the quantile
spectra which is related to the second moment features f , as previously explained, we
have established the relation of the traditional coherency and the quantile coherency.
Obviously, this relation is not necessarily 1-to-1 anymore.

If the stationary process is from a parametric family of time series models the second
moment features can be determined for each parameter. We now discuss three examples
of Gaussian processes. Each example will have more complex serial dependence than the
previous one. Without loss of generality we consider only bivariate examples. The first
example is the one of non-degenerate Gaussian white noise. More precisely, we consider
a Gaussian process (Xt,1, Xt,2)t∈Z, where Cov(Xt,i, Xs,j) = 0 and Var(Xt,i) > 0, for all
t 6= s and i, j ∈ {1, 2}.

Observe that, due to the independence of (Xt,1, Xt,2) and (Xs,1, Xs,2), t 6= s, we have

γ1,2
k (τ1, τ2) = 0 for all k 6= 0 and τ1, τ2 ∈ [0, 1]. It is easy to see that

R1,2(ω; τ1, τ2) =
CGauss(τ1, τ2;R1,2(ω))− τ1τ2√

τ1(1− τ1)
√
τ2(1− τ2))

(S.3)

where R1,2(ω) denotes the traditional coherency, which in this case (a bivariate i. i. d.
sequence) equals c1,20 (c1,10 c2,20 )−1/2 (for all ω).

By employing (S.3), we can thus determine the quantile coherency for any given tra-
ditional coherency and fixed combination of τ1, τ2 ∈ (0, 1). In the top-centre part of
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Figure S.4 this conversion is visualised for four pairs of quantile levels and any possible
traditional coherency. It is important to observe the limited range of the quantile co-
herency. For example, there never is strong positive dependence between the τ1-quantile
in the first component and the τ2-quantile in the second component when both τ1 and
τ2 are close to 0. Similarly, there never is strong negative dependence when one of the
quantile levels is chosen close to 0 while the other one is chosen close to 1. This ob-
servation is not special for the Gaussian case, but holds for any sequence of pairwise
independent bivariate random variables. Bounds that correspond to the case of perfect
positive or perfect negative dependence (at the level of quantiles), can be derived from
the Fréchet/Hoeffding bounds for copulas: in the case of serial independence quantile
coherency is bounded by

max{τ1 + τ2 − 1, 0} − τ1τ2√
τ1(1− τ1)

√
τ2(1− τ2))

≤ R1,2(ω; τ1, τ2) ≤ min{τ1, τ2} − τ1τ2√
τ1(1− τ1)

√
τ2(1− τ2))

.

Note that these bounds hold for any joint distribution of (Xt,i, Xt,j). In particular, the
bound holds independent of the correlation.

In the top-left part of Figure S.4 traditional coherencies are shown for this example.
Because no serial dependence is present, all coherencies are flat lines. Their level is equal
to the correlation between the two components. In the top-right part of Figure S.4 the
quantile coherency for the example is shown when the correlation is 0.6 (the correspond-
ing coherency is marked with a bold line in the top-left figure). Note that for fixed τ1
and τ2 the value of the quantile coherency corresponds to the value in the top-centre
figure where the vertical grey line and the corresponding graph intersect. The quantile
coherency in the right part does not depend on the frequency, because in this example
there is no serial dependence.

In the top-centre part of Figure S.4 it is important to observe that for traditional
coherency 0 (i. e., when the components are independent, due to (Xt,1, Xt,2) being un-
correlated jointly Gaussian) quantile coherency is zero at all quantile levels.

In the next two examples we stay in the Gaussian framework, but introduce serial
dependence. Consider a bivariate, stable VAR(1) process Xt = (Xt,1, Xt,2)′, t ∈ Z,
fulfilling the difference equation

Xt = AXt−1 + εt, (S.4)

with parameter A ∈ R2×2 and i. i. d., centred, bivariate, jointly normally distributed
innovations εt with unit variance E(εtε

′
t) = I2.

In our second example serial dependence is introduced, by relating each component
to the lagged other component in the regression equation. In other words, we consider
model (S.4) where the matrix A has diagonal elements equal to 0 and some value a
on the off-diagonal. Assuming |a| < 1 yields a stable process. As described earlier, the
traditional spectral density matrix, which in this example is of the form

f(ω) := (2π)−1
(
I2 −

(
0 a
a 0

)
e−iω

)−1(
I2 −

(
0 a
a 0

)
eiω
)−1

, |a| < 1,

uniquely determines the traditional coherency and, because of the Gaussian innovations,
also the quantile coherency.

In the middle-left plot of Figure S.4 the traditional coherencies for this model are
shown when a takes different values. If we now fix a frequency [6= π/4], then the value
of the traditional coherency for this frequency uniquely determines the value of a. In
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Figure S.4. Quantile and traditional coherency for selected Gaussian processes.

Figure S.4 we have marked the frequency of ω = 2π52/512 and coherency value of 0.6
by grey lines and printed the corresponding coherency (as a function of ω) in bold. Note
that of the many pictured coherencies [one for each a ∈ (−1, 1)] only one has the value of
0.6 at this frequency. In the centre plot of the middle row we show the relation between
the traditional coherency and quantile coherency for the considered model. For four com-
binations of quantile levels and all values of a ∈ (−1, 1) the corresponding traditional
coherencies and quantile coherencies are shown. It is important to observe that the rela-
tion is shown only for one frequency [ω = 2π52/512]. We observe that the range of values
for the quantile coherency is limited and that the range depends on the combination of
quantile levels and on the frequency. While this is quite similar to the first example where
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quantile coherency had to be bounded due to the Fréchet/Hoeffding bounds, we here also
observe (for this particular model and frequency) that the range of values for the tradi-
tional coherency is limited. This fact is also apparent in the middle-left plot. To relate
the traditional and quantile coherency at this particular frequency, one can, using the
centre-middle plot, proceed as in the first example. For a given frequency choose a valid
traditional coherency (x-axis of the middle-centre plot) and combination of quantile lev-
els (one of the lines in the plot) and then determine the value for the quantile coherency
(depicted in the right plot). Note that (in this example), for a given frequency and com-
bination of quantile levels the relation is still a function of the traditional coherency, but
fails to be injective.

In our final example we consider the Gaussian VAR(1) model (S.4) where we now allow
for an additional degree of freedom, by letting the matrix A be of the form where the
diagonal elements both are equal to b and keep the value a on the off-diagonal as before.
Thus, compared to the previous example, where b = 0 was required, each component
now may also depend on its own lagged value. It is easy to see that |a+ b| < 1 yields a
stable process. In this case the tradtional spectral density matrix is of the form

f(ω) := (2π)−1
(
I2 −

(
b a
a b

)
e−iω

)−1(
I2 −

(
b a
a b

)
eiω
)−1

, |a+ b| < 1.

In the bottom-left part of Figure S.4 a collection of traditional coherencies (as functions
of ω) is shown. Due to the extra degree of freedom in the model the variety of shapes
increased dramatically. In particular, for a given frequency, the value of the traditional
coherency does not uniquely specify the model parameter any more. We have marked
three coherencies (as functions of ω) that have value 0.6 at ω = 2π52/512 in bold to
stress this fact. The corresponding processes have (for a fixed combination of quantile
levels) different values of quantile coherency at this frequency. This fact can be seen
from the bottom-centre part of Figure S.4, where the relation between traditional and
quantile coherency is depicted for the frequency fixed and two combinations of quantile
levels are shown in black and grey. Note the important fact that the relation (for fixed
frequency) is not a function of the traditional coherency any more. The bottom-right part
of the figure shows the quantile coherency curves (as a function of ω) for the three model
parameters (shown in bold in the bottom-left part of the figure) and the two combination
of quantile levels. It is clearly visible that even though, for the particular fixed frequency,
the traditional coherency coincide, the value and shape of the quantile coherency can be
very different depending on the underlying process. This third example illustrated how a
frequency-by-frequency comparison of the traditional coherency with its quantile-based
counterpart may fail, even when the process is quite simple.

We have seen, from the theoretical discussion in the beginning of this section, that
for Gaussian processes, when the marginal distributions are fixed, a relation between
the traditional spectra and the quantile spectra exists. This relation is a 1-to-1 relation
between the quantities as functions of frequency (and quantile levels). The three examples
have illustrated that a comparison on a frequency-by-frequency basis may be possible in
special cases but does not hold in general.

In conclusion we therefore advise to see the quantile cross-spectral density as a measure
for dependence on its own, as the quantile-based quantities focus on more general types
of dependence. We further point out that quantile coherency may be used in examples
where the conditions that make a relation possible are fulfilled, but also, for example, to
analyse the dependence in the quantile vector autoregressive (QVAR) processes, described
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in Section S2. The QVAR processes possess more complicated dynamics, which cannot
be described only by the second order moment features.

S4. ASYMPTOTIC PROPERTIES OF THE PROPOSED ESTIMATORS FOR
QUANTILE CROSS-SPECTRAL DENSITIES

We are now going to state a result on the asymptotic properties of the CCR-periodogram
In,R(ω; τ1, τ2) defined in (??) and (??).

Proposition S4.1. Assume that (Xt)t∈Z is strictly stationary and satisfies Assump-
tion ??. Further assume that the marginal distribution functions Fj, j = 1, . . . , d are
continuous. Then, for every fixed ω 6= 0 mod 2π,(

In,R(ω; τ1, τ2)
)

(τ1,τ2)∈[0,1]2
⇒
(
I(ω; τ1, τ2)

)
(τ1,τ2)∈[0,1]2

in `∞Cd×d([0, 1]2). (S.5)

The Cd×d-valued limiting processes I, indexed by (τ1, τ2) ∈ [0, 1]2, is of the form

I(ω; τ1, τ2) =
1

2π
D(ω; τ1)D(ω; τ2)′,

where D(ω; τ) = (Dj(ω; τ))j=1,...,d, τ ∈ [0, 1], ω ∈ R is a centred, Cd-valued Gaussian
processes with covariance structure of the following form

Cov(Dj1(ω; τ1),Dj2(ω; τ2)) = 2πfj1,j2(ω; τ1, τ2).

Moreover, D(ω; τ) = D(−ω; τ) = D(ω + 2π; τ), and the family {D(ω; ·) : ω ∈ [0, π]}
is a collection of independent processes. In particular, the weak convergence (S.5) holds
jointly for any finite fixed collection of frequencies ω.

For ω = 0 mod 2π the asymptotic behaviour of the CCR-periodogram is as follows: we
have djn,R(0; τ) = nτ + op(n

1/2), where the exact form of the remainder term depends
on the number of ties in Xj,0, . . . , Xj,n−1. Therefore, under the assumptions of Proposi-
tion S4.1, we have In,R(0; τ1, τ2) = n(2π)−1τ1τ21d1

′
d+op(1), where 1d := (1, . . . , 1)′ ∈ Rd.

We now state a result that quantifies the uncertainty in estimating f(ω; τ1, τ2) by
Gn,R(ω; τ1, τ2) asymptotically.

Theorem S4.1. Let Assumptions ?? and ?? hold. Assume that the marginal distribution
functions Fj, j = 1, . . . , d are continuous and that constants κ > 0 and k ∈ N exist, such
that bn = o(n−1/(2k+1)) and bnn

1−κ →∞. Then, for any fixed ω ∈ R, the process

Gn(ω; ·, ·) :=
√
nbn

(
Ĝn,R(ω; τ1, τ2)− f(ω; τ1, τ2)−B(k)

n (ω; τ1, τ2)
)
τ1,τ2∈[0,1]

satisfies

Gn(ω; ·, ·)⇒ H(ω; ·, ·) in `∞Cd×d([0, 1]2), (S.6)

where the elements of the bias matrix B
(k)
n are given by{

B(k)
n (ω; τ1, τ2)

}
j1,j2

:=

k∑
`=2

b`n
`!

∫ π

−π
v`W (v)dv

d`

dω`
fj1,j2(ω; τ1, τ2) (S.7)

and fj1,j2(ω; τ1, τ2) is defined in (??). The process H(ω; ·, ·) := (Hj1,j2(ω; ·, ·))j1,j2=1,...,d
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in (S.6) is a centred, Cd×d-valued Gaussian process characterised by

Cov
(
Hj1,j2(ω;u1, v1

)
,Hk1,k2(λ;u2, v2)

)
= 2π

(∫ π

−π
W 2(α)dα

)(
fj1,k1(ω;u1, u2)fj2,k2(−ω; v1, v2)η(ω − λ)

+ fj1,k2(ω;u1, v2)fj2,k1(−ω; v1, u2)η(ω + λ)
)
, (S.8)

where η(x) := I{x = 0( mod 2π)} [cf. (Brillinger, 1975, p. 148)] is the 2π-periodic
extension of Kronecker’s delta function. The family {H(ω; ·, ·), ω ∈ [0, π]} is a collection
of independent processes and H(ω; τ1, τ2) = H(−ω; τ1, τ2) = H(ω + 2π; τ1, τ2).

A few remarks on the result are in order. In sharp contrast to classical spectral analysis,
where higher-order moments are required to obtain smoothness of the spectral density
[cf. Brillinger (1975), p. 27], Assumption ?? guarantees that the quantile cross-spectral
density is an analytical function of ω. Hence, the kth derivative of ω 7→ fj1,j2(ω; τ1, τ2)
in (S.7) exists without further assumptions.

The case ω = 0 mod 2π does not require separate treatment as in Proposition S4.1,
because Ij1,j2n,R (0, τ1, τ2) is excluded in (??): the definition of Ĝj1,j2n,R (ω; τ1, τ2).

Assume that W is a kernel of order p; i. e., for some p, satisfies
∫ π
−π v

jW (v)dv = 0,

for all j < p, and 0 <
∫ π
−π v

pW (v)dv < ∞. E. g., the Epanechnikov kernel is a kernel

of order p = 2. Then, the bias is of order bpn. As the variance is of order (nbn)−1, the
mean squared error is minimal, if bn � n−1/(2p+1). This optimal bandwidth fulfills the
assumptions of Theorem S4.1. A detailed discussion of how Theorem S4.1 can be used
to construct asymptotically valid confidence intervals is deferred to Section D.

The independence of the limit {H(ω; ·, ·), ω ∈ [0, π]} has two important implications.
On one hand, the weak convergence (S.6) holds jointly for any finite fixed collection of
frequencies ω. On the other hand, if one were to consider the smoothed CCR-periodogram
as a function of the three arguments (ω, τ1, τ2), weak convergence cannot hold any more.
This limitation of convergence is due to the fact that there exists no tight element in
`∞Cd×d([0, π]× [0, 1]2) that has the right finite-dimensional distributions, which would be
required for process convergence in `∞Cd×d([0, π]× [0, 1]2).

Fixing j1, j2 and τ1, τ2 the CCR-periodogram Ĝj1,j2n,R (ω; τ1, τ2) and traditional smoothed
cross-periodogram determined from the unobservable, bivariate time series(

I{Fj1(Xt,j1) ≤ τ1}, I{Fj1(Xt,j2) ≤ τ2}
)
, t = 0, . . . , n− 1, (S.9)

are asymptotically equivalent. Theorem S4.1 thus reveals that in the context of the esti-
mation of the quantile cross-spectral density the estimation of the marginal distribution
has no impact on the limit distribution (cf. comment after Remark 3.5 in Kley et al.
(2016)).

S5. ON THE CONSTRUCTION OF INTERVAL ESTIMATORS

In this section we collect details on how to construct pointwise confidence bands.
Sections ?? and S4 contained asymptotic results on the uncertainty of point estimation

of the newly introduced quantile cross-spectral quantities. In this section we describe
strategies to estimate the variances (of the real and imaginary parts) that appear in
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those limit results and describe how asymptotically valid pointwise confidence bands can
be constructed.

In all three subsections the following comment is relevant. Assuming that we have
determined the weights Wn form a kernel W that is of order d. We will choose a
bandwidth bn = o(n−1/(2d+1)). This choice implies that compared to the variance the
bias (that in some form appears in both limit results) is asymptotically negligible:√
nbnB

(k)
n (ω; τ1, τ2) = o(1).

S5.1. Pointwise confidence bands for f

Utilising Theorem S4.1 we now construct pointwise asymptotic (1 − α)-level confidence
bands for the real and imaginary parts of fj1,j2(ωkn; τ1, τ2), ωkn := 2πk/n, as follows:

C(1)
r,n(ωkn; τ1, τ2) := <G̃j1,j2n,R (ωkn; τ1, τ2)±<σj1,j2(1) (ωkn; τ1, τ2)Φ−1(1− α/2),

for the real part, and

C
(1)
i,n (ωkn; τ1, τ2) := =G̃j1,j2n,R (ωkn; τ1, τ2)±=σj1,j2(1) (ωkn; τ1, τ2)Φ−1(1− α/2),

for the imaginary part of the quantile cross-spectrum. Here,

G̃j1,j2n,R (ωkn; τ1, τ2) := Ĝj1,j2n,R (ωkn; τ1, τ2)/W k
n , W k

n :=
2π

n

n−1∑
s=1

Wn(ωkn − ωsn),

and Φ denotes the cumulative distribution function of the standard normal distribution,1(
<σj1,j2(ωkn; τ1, τ2)

)2
:= 0∨

{
Cov(H1,2,H1,2) if j1 = j2 and τ1 = τ2,
1
2

(
Cov(H1,2,H1,2) + <Cov(H1,2,H2,1)

)
otherwise,

and(
=σj1,j2(ωkn; τ1, τ2)

)2
:= 0∨

{
0 if j1 = j2 and τ1 = τ2,
1
2

(
Cov(H1,2,H1,2)−<Cov(H1,2,H2,1)

)
otherwise,

where Cov(Ha,b,Hc,d) denotes an estimator of Cov
(
Hja,jb(ωkn; τa, τb

)
,Hjc,jd(ωkn; τc, τd)

)
.

Here, motivated by Theorem 7.4.3 in Brillinger (1975), we use( 2π

n ·W k
n

)
×

[
n−1∑
s=1

Wn

(
2π(k−s)/n

)
Wn

(
2π(k−s)/n

)
G̃ja,jcn,R (τa, τc; 2πs/n)G̃jb,jdn,R (τb, τd;−2πs/n)

+

n−1∑
s=1

Wn

(
2π(k − s)/n

)
Wn

(
2π(k + s)/n

)
G̃ja,jdn,R (τa, τd; 2πs/n)G̃jb,jcn,R (τb, τc;−2πs/n)

]
(S.10)

The definition of σj1,j2(1) (ωkn; τ1, τ2) is motivated by the fact that =Ĝj1,j2n,R (ωkn; τ1, τ2) =

0, if j1 = j2 and τ1 = τ2. Furthermore, note that, for any complex-valued random variable
Z, with complex conjugate Z̄,

Var(<Z) =
1

2

(
Var(Z) + <Cov(Z, Z̄)

)
; Var(=Z) =

1

2

(
Var(Z)−<Cov(Z, Z̄)

)
, (S.11)

1Note that for k = 0, . . . , n − 1 we have Wk
n := 2π/n

∑
0=s6=kWn(2πs/n). For k ∈ Z with k < 0 or

k ≥ n we can define it as the n periodic extension.
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and we have H1,2 = H2,1.

S5.2. Pointwise confidence bands for R

We utilise Theorem ?? to construct pointwise asymptotic (1−α)-level confidence bands
for the real and imaginary parts of Rj1,j2(ω; τ1, τ2) as follows:

C(2)
r,n(ωkn; τ1, τ2) := <R̂j1,j2

n,R (ωkn; τ1, τ2)±<σj1,j2(2) (ωkn; τ1, τ2)Φ−1(1− α/2),

for the real part, and

C
(2)
i,n (ωkn; τ1, τ2) := =R̂j1,j2

n,R (ωkn; τ1, τ2)±=σj1,j2(2) (ωkn; τ1, τ2)Φ−1(1− α/2),

for the imaginary part of the quantile coherency. Here, Φ stands for the cdf of the standard
normal distribution,

(
<σj1,j2(2) (ωkn; τ1, τ2)

)2
:= 0 ∨


0 if j1 = j2

and τ1 = τ2,
1
2

(
Cov(L1,2,L1,2) + <Cov(L1,2,L2,1)

)
otherwise,

and

(
=σj1,j2(2) (ωkn; τ1, τ2)

)2
:= 0 ∨


0 if j1 = j2

and τ1 = τ2,
1
2

(
Cov(L1,2,L1,2)−<Cov(L1,2,L2,1)

)
otherwise.

The definition of σj1,j2(2) (ωkn; τ1, τ2) is motivated by (S.11) and the fact that we have

L1,2 = L2,1. Furthermore, note that R̂j1,j2
n,R (ωkn; τ1, τ2) = 1, if j1 = j2 and τ1 = τ2..

In the definition of σj1,j2(2) (ωkn; τ1, τ2) we have used Cov(La,b,Lc,d) to denote an estimator

for

Cov
(
Lj1,j2(ωkn; τ1, τ2

)
,Lj3,j4(ωkn; τ3, τ4)

)
.

Recalling the definition of he limit process in Theorem ?? we derive the following ex-
pression:

1√
f1,1f2,2f3,3f4,4

Cov
(
H1,2 −

1

2

f1,2
f1,1

H1,1 −
1

2

f1,2
f2,2

H2,2,H3,4 −
1

2

f3,4
f3,3

H3,3 −
1

2

f3,4
f4,4

H4,4

)
=

Cov(H1,2,H3,4)√
f1,1f2,2f3,3f4,4

− 1

2

f3,4 Cov(H1,2,H3,3)√
f1,1f2,2f33,3f4,4

− 1

2

f3,4 Cov(H1,2,H4,4)√
f1,1f2,2f3,3f34,4

− 1

2

f1,2 Cov(H1,1,H3,4)√
f31,1f2,2f3,3f4,4

+
1

4

f1,2f3,4 Cov(H1,1,H3,3)√
f31,1f2,2f

3
3,3f4,4

+
1

4

f1,2f3,4 Cov(H1,1,H4,4)√
f31,1f2,2f3,3f

3
4,4

− 1

2

f1,2 Cov(H2,2,H3,4)√
f1,1f32,2f3,3f4,4

+
1

4

f1,2f3,4 Cov(H2,2,H3,3)√
f1,1f32,2f

3
3,3f4,4

+
1

4

f1,2f3,4 Cov(H2,2,H4,4)√
f1,1f32,2f3,3f

3
4,4

,

where we have written fa,b for the quantile spectral density fja,jb(ωkn; τa, τb), and Ha,b
for the limit distribution Hja,jb(ωkn; τa, τb

)
for any a, b = 1, 2, 3, 4).
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Thus, considering the special case where τ3 = τ1 and τ4 = τ2, we have

Cov(L1,2,L1,2)

=
1

f1,1f2,2

(
Cov(H1,2,H1,2)−< f1,2 Cov(H1,1,H1,2)

f1,1
−< f1,2 Cov(H2,2,H1,2)

f2,2

+
1

4
|f1,2|2

(Cov(H1,1,H1,1)

f21,1
+ 2<Cov(H1,1,H2,2)

f1,1f2,2
+

Cov(H2,2,H2,2)

f22,2

)) (S.12)

and for the special case where τ3 = τ1 and τ4 = τ2 we have

Cov(L1,2,L2,1)

=
1

f1,1f2,2

(
Cov(H1,2,H2,1)− f1,2 Cov(H1,2,H2,2)

f2,2
− f1,2 Cov(H1,2,H1,1)

f1,1

+
1

4
f21,2

(Cov(H1,1,H1,1)

f21,1
+ 2<Cov(H1,1,H2,2)

f1,1f2,2
+

Cov(H2,2,H2,2)

f22,2

))
.

We substitute consistent estimators for the unknown quantities. To do so we abuse no-
tation using fa,b to denote G̃ja,jbn,R (ωkn; τa, τb) and write Cov(Ha,b,Hc,d) for the quantity
defined in (S.10).

S6. PROOFS OF THE RESULTS IN SECTIONS 4 AND S4

In this section the proofs to the results in Sections ?? and S4 are given. Before we begin,
note that by a trivial generalisation of Proposition 3.1 in Kley et al. (2016) we have
that Assumption ?? implies that there exist constants ρ ∈ (0, 1) and K <∞ such that,
for arbitrary intervals A1, ..., Ap ⊂ R, arbitrary indices j1, . . . , jp ∈ {1, . . . , d} and times
t1, ..., tp ∈ Z,

| cum(I{Xt1,j1 ∈ A1}, . . . , I{Xtp,jp ∈ Ap})| ≤ Kρmaxi,j |ti−tj |. (S.13)

We will use this fact several times throughout the proofs in this section.

S6.1. Proof of Theorem ??

By a Taylor expansion we have, for every x, x0 > 0,

1√
x

=
1
√
x0
− 1

2

1√
x3

0

(x− x0) +
3

8
ξ−5/2
x,x0

(x− x0)2,

where ξx,x0
is between x and x0. Let Rn(x, x0) := 3

8ξ
−5/2
x,x0 (x− x0)2, then

x
√
yz
− x0√

y0z0
=

1
√
y0z0

(
(x− x0)− 1

2

x0

y0
(y − y0)− 1

2

x0

z0
(z − z0)

)
+ rn, (S.14)

where

rn = (x− x0)
(
− 1

2

1

y0
(y − y0)− 1

2

1

z0
(z − z0)

)
+ x
(
Rn(y, y0)

√
y0

(
1− 1

2

1

z0
(z − z0)

)
+Rn(z, z0)

√
z0

(
1− 1

2

1

y0
(y − y0)

)
+

1

4

1

y0
(y − y0)

1

z0
(z − z0) +

√
y0z0Rn(y, y0)Rn(z, z0)

)
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S16 J. Baruńık and T. Kley

Write fa,b for fja,jb(ω; τa, τb), Ga,b for Ĝja,jbn,R (ω; τa, τb), andBa,b for {B(k)
n (ω; τa, τb)}ja,jb

(a, b = 1, 2, 3, 4). We want to employ (S.14) and to this end let

x := Ga,b y := Ga,a z := Gb,b

x0 := fa,b +Ba,b y0 := fa,a +Ba,a z0 := fb,b +Bb,b

By Theorem S4.1 the differences x−x0, y−y0, and z−z0 are in Op((nbn)−1/2), uniformly
with respect to τ1, τ2. Under the assumption that nbn → ∞, as n → ∞, this entails
Ga,a −Ba,a → fa,a, in probability. For ε ≤ τ1, τ2 ≤ 1− ε, we have fa,a > 0, such that, by

the Continuous Mapping Theorem we have (Ga,a − Ba,a)−5/2 → f
−5/2
a,a , in probability.

As Ba,a = o(1), we have y−5/2 − y−5/2
0 = op(1). Finally, due to

ξ−5/2
y,y0 ≤ y

−5/2
n ∨ y−5/2

0 ≤ (y−5/2
n − y−5/2

0 ) ∨ 0 + y
−5/2
0 = op(1) +O(1) = Op(1),

we have that Rn(y, y0) = Op((nbn)−1).
Analogous arguments yields Rn(z, z0) = Op((nbn)−1). Thus we have shown that

R̂j1,j2
n,R (ω; τ1, τ2)− fa,b +Ba,b√

fa,a +Ba,a

√
fb,b +Bb,b

=
1√

f1,1f2,2

(
[G1,2 − f1,2 −B1,2]− 1

2

f1,2
f1,1

[G1,1 − f1,1 −B1,1]− 1

2

f1,2
f2,2

[G2,2 − f2,2 −B2,2]
)

+Op
(
1/(nbn)

)
,

with the Op holding uniformly with respect to τ1, τ2. Further more, note that

fa,b +Ba,b√
fa,a +Ba,a

√
fb,b +Bb,b

=
fa,b√
fa,afb,b

+
1√

fa,afb,b

(
Ba,b −

1

2

fa,b
fa,a

Ba,a −
1

2

fa,b
fb,b
Bb,b

)
+O(|Ba,b|(Ba,a +Bb,b) +B2

a,a +B2
b,b +Ba,aBb,b),

where we have used (S.14) again. By a trivial, multivariate extension of Lemma A.3
in Kley et al. (2016) we have that

sup
τ1,τ2∈[ε,1−ε]

∣∣∣ d`

dω`
fj1,j2(ω; τ1, τ2)

∣∣∣ ≤ Cε,`.
Therefore, bn satisfies

sup
τ1,τ2∈[ε,1−ε]

∣∣∣ k∑
`=2

b`n
`!

∫ π

−π
v`W (v)dv

d`

dω`
fj1,j2(ω; τ1, τ2)

∣∣∣ = o
(
(nbn)−1/4

)
,

for all j1, j2 = 1, . . . , d, which implies that

|Ba,b|(Ba,a +Bb,b) +B2
a,a +B2

b,b +Ba,aBb,b = o
(
(nbn)−1/2

)
.

Therefore,√
nbn

(
R̂j1,j2
n,R (ω; τ1, τ2)−Rj1,j2(ω; τ1, τ2)

− 1√
fa,afb,b

(
Ba,b −

1

2

fa,b
fa,a

Ba,a −
1

2

fa,b
fb,b
Bb,b

))
τ1,τ2∈[0,1]
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and
√
nbn√

f1,1f2,2

(
[G1,2−f1,2−B1,2]− 1

2

f1,2
f1,1

[G1,1−f1,1−B1,1]− 1

2

f1,2
f2,2

[G2,2−f2,2−B2,2]
)

(S.15)

are asymptotically equivalent in the sense that if one of the two converges weakly in
`∞Cd×d([0, 1]2), then so does the other. The assertion then follows by Theorem S4.1,
Slutzky’s lemma and the Continuous Mapping Theorem. 2

S6.2. Proof of Proposition S4.1

The proof resembles the proof of Proposition 3.4 in Kley et al. (2016), where the univari-
ate case was handled. For j = 1, . . . , d we have, from the continuity of Fj that the ranks of
the random variables X0,j , ..., Xn−1,j and Fj(X0,j), ..., Fj(Xn−1,j) coincide almost surely.
Thus, without loss of generality, we can assume that the CCR-periodogram is computed
from the unobservable data (Fj(X0,j))j=1,...,d, ..., (Fj(Xn−1,j))j=1,...,d. In particular, we
can assume the marginals to be uniform.

Applying the Continuous Mapping Theorem afterward, it suffices to prove(
n−1/2djn,R(ω; τ)

)
τ∈[0,1],j=1,...,d

⇒
(
Dj(ω; τ)

)
τ∈[0,1],j=1,...,d

in `∞Cd([0, 1]), (S.16)

where `∞Cd([0, 1]) is the space of bounded functions [0, 1]→ Cd that we identify with the
product space `∞([0, 1])2d. Let

djn,U (ω; τ) :=

n−1∑
t=0

I{Fj(Xt,j) ≤ τ}e−iωt,

j = 1, . . . , d, ω ∈ R, τ ∈ [0, 1], and note that for (S.16) to hold, it is sufficient that(
n−1/2djn,U (ω; τ)

)
τ∈[0,1],j=1,...,d

satisfies the following two conditions:

(i1) convergence of the finite-dimensional distributions, i. e.,(
n−1/2dj`n,U (ω`; τ`)

)
`=1,...,k

d−→
(
Dj`(ω`; τ`)

)
`=1,...,k

, (S.17)

for any (j`, τ`) ∈ {1, . . . , d} × [0, 1], ω` 6= 0 mod 2π, ` = 1, . . . , k and k ∈ N;

(i2) stochastic equicontinuity: for any x > 0 and any ω 6= 0 mod 2π,

lim
δ↓0

lim sup
n→∞

P
(

sup
τ1,τ2∈[0,1]
|τ1−τ2|≤δ

|n−1/2(djn,U (ω; τ1)−djn,U (ω; τ2))| > x
)

= 0, ∀j = 1, . . . , d.

(S.18)

Under (i1) and (i2), an application of Theorems 1.5.4 and 1.5.7 from van der Vaart and
Wellner (1996) then yields(

n−1/2djn,U (ω; τ)
)
τ∈[0,1],j=1,...,d

⇒
(
Dj(ω; τ)

)
τ∈[0,1],j=1,...,d

in `∞Cd([0, 1]). (S.19)
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In combination with

sup
τ∈[0,1]

|n−1/2(djn,R(ω; τ)− djn,U (ω; τ))| = op(1), for ω 6= 0 mod 2π, j = 1, . . . , d,

(S.20)
which we will prove below, (S.19) yields the desired result: (S.16). For the proof of (S.20),
we denote by F̂−1

n,j (τ) := inf{x : F̂n,j(x) ≥ τ} the generalised inverse of F̂n,j and let
inf ∅ := 0. Then, we have, as in (7.25) of Kley et al. (2016), that

sup
ω∈R

sup
τ∈[0,1]

∣∣∣djn,R(ω; τ)− djn,U (ω; F̂−1
n,j (τ))

∣∣∣ ≤ n sup
τ∈[0,1]

|F̂n,j(τ)− F̂n,j(τ−)| = Op(n
1/2k)

(S.21)
where F̂n,j(τ−) := limξ↑0 F̂n,j(τ − ξ). The Op-bound in (S.21) follows from Lemma S6.7.
Therefore, it suffices to bound the terms

sup
τ∈[0,1]

n−1/2|djn,U (ω; F̂−1
n,j (τ))− djn,U (ω, τ))|, for all j = 1, . . . , d.

To do so, note that, for any x > 0 and δn = o(1) satisfying n1/2δn →∞, we have

P
(

sup
τ∈[0,1]

n−1/2|djn,U (ω; F̂−1
n,j (τ))− djn,U (ω; τ))| > x

)
≤ P

(
sup
τ∈[0,1]

sup
|u−τ |≤δn

|djn,U (ω;u)− djn,U (ω; τ)| > xn1/2, sup
τ∈[0,1]

|F̂−1
n,j (τ)− τ | ≤ δn

)
+ P

(
sup
τ∈[0,1]

|F̂−1
n,j (τ)− τ | > δn

)
= o(1) + o(1).

The first o(1) follows from (S.18). The second one is a consequence of Lemma S6.8.
It thus remains to prove (S.17) and (S.18). For any fixed j = 1, . . . , d the process(
djn,U (ω, τ)

)
τ∈[0,1]

is determined by the univariate time series X0,j , . . . , Xn−1,j . Under

the assumptions made here, (S.18) therefore follows from (8.7) in Kley et al. (2016).
Finally, we establish (S.17), by employing Lemma S6.6 in combination with Lemma P4.5

and Theorem 4.3.2 from Brillinger (1975). More precisely, to apply Lemma P4.5 from
Brillinger (1975), we have to verify that, for any j1, . . . , j` ∈ {1, . . . , d}, τ1, . . . , τ` ∈ [0, 1],
` ∈ N, and ω1, . . . , ω` 6= 0 mod 2π, all cumulants of the vector

n−1/2
(
dj1n,U (ω1; τ1), dj1n,U (−ω1; τ1), . . . , dj`n,U (ω`; τ`), d

j`
n,U (−ω`; τ`)

)
converge to the corresponding cumulants of the vector(

Dj1(ω1; τ1),Dj1(−ω1; τ1), . . . ,Dj`(ω`; τ`),Dj`(−ω`; τ`)
)
.

For the cumulants of order one the arguments from the univariate case (cf. the proof of
Proposition 3.4 in Kley et al. (2016)) apply: we have |E(n−1/2djn,U (ω; τ))| = o(1), for
any j = 1, . . . , d, τ ∈ [0, 1] and fixed ω 6= 0 mod 2π. Furthermore, for the cumulants of
order two, applying Theorem 4.3.1 in Brillinger (1975) to the bivariate process

(I{Xt,j1 ≤ qj1(µ1)}, I{Xt,j2 ≤ qj2(µ2)}),

we obtain

cum(n−1/2di1n,U (λ1;µ1), n−1/2di2n,U (λ2;µ2)) = 2πn−1∆n(λ1 + λ2)fi1,i2(λ1;µ1, µ2) + o(1)

for any (i1, λ1, µ1), (i2, λ2, µ2) ∈
⋃k
`=1{(i`, ω`, τ`), (j`,−ω`, τ`)}, which yields the correct
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second moment structure. The function ∆n is defined in Lemma S6.6. Finally, the cu-
mulants of order J , with J ∈ N and J ≥ 3, all tend to zero, as in view of Lemma S6.6

cum(n−1/2di1n,U (λ1;µ1), . . . , n−1/2diJn,U (λJ ;µJ))

≤ Cn−J/2(|∆n(

J∑
j=1

λj)|+ 1)ε(| log ε|+ 1)d = O(n−(J−2)/2) = o(1),

for (i1, λ1, µ1), . . . , (iJ , λJ , µJ) ∈
⋃k
`=1{(i`, ω`, τ`), (i`,−ω`, τ`)}, where ε := minJj=1 µj .

This implies that the limit Dj(τ ;ω) is Gaussian, and completes the proof of (S.17).
Proposition S4.1 follows. 2

S6.3. Proof of Theorem S4.1

We proceed in a similar fashion as in the proof of the univariate estimator which was
analysed in Kley et al. (2016). First, we state an asymptotic representation result by

which the estimator Ĝn,R can be approximated, in a suitable uniform sense, by another

process Ĝn,U which is not defined as a function of the standardised ranks F̂n,j(Xt,j), but
as a function of the unobservable quantities Fj(Xt,j), t = 0, . . . , n−1, j = 1, . . . , d. More
precisely, this process is defined as

Ĝn,U (ω; τ1, τ2) := (Ĝj1,j2n,U (ω; τ1, τ2))j1,j2=1,...,d,

where

Ĝj1,j2n,U (ω; τ1, τ2) :=
2π

n

n−1∑
s=1

Wn

(
ω − 2πs/n

)
Ij1,j2n,U (2πs/n, τ1, τ2)

Ij1,j2n,U (ω; τ1, τ2) :=
1

2πn
dj1n,U (ω; τ1)dj2n,U (−ω; τ2)

djn,U (ω; τ) :=

n−1∑
t=0

I{Fj(Xt,j) ≤ τ}e−iωt. (S.22)

Theorem S4.1 then follows from the asymptotic representation of Ĝn,R by Ĝn,U (i. e.,

Theorem S6.1(iii)) and the asymptotic properties of Ĝn,U (i. e., Theorem S6.1(i)–(ii)),
which we now state:

Theorem S6.1. Let Condition (S.13) and Assumption ?? hold, and assume that the
distribution functions Fj of X0,j are continuous for all j = 1, . . . , d. Let bn satisfy the
assumptions of Theorem S4.1. Then,

(i) for any fixed ω ∈ R, as n→∞,√
nbn
(
Ĝn,U (ω; τ1, τ2)− EĜn,U (ω; τ1, τ2)

)
τ1,τ2∈[0,1]

⇒ H(ω; ·, ·)

in `∞Cd×d([0, 1]2), where the process H(ω; ·, ·) is defined in Theorem S4.1;

(ii) still as n→∞,
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sup
j1,j2∈{1,...,d}
τ1,τ2∈[0,1]

ω∈R

∣∣∣EĜj1,j2n,U (τ1, τ2;ω)− fj1,j2(ω; τ1, τ2)−
{
B(k)
n (ω; τ1, τ2)

}
j1,j2

∣∣∣
= O((nbn)−1) + o(bkn),

where
{
B

(k)
n (ω; τ1, τ2)

}
j1,j2

is defined in (S.7);

(iii) for any fixed ω ∈ R,

sup
j1,j2∈{1,...,d}
τ1,τ2∈[0,1]

|Ĝj1,j2n,R (τ1, τ2;ω)− Ĝj1,j2n,U (τ1, τ2;ω)| = op
(
(nbn)−1/2 + bkn

)
;

if moreover the kernel W is uniformly Lipschitz-continuous, this bound is uniform
with respect to ω ∈ R.

The proof of Theorem S6.1 is lengthy, technical and in many places similar to the proof
of Theorem 3.6 in Kley et al. (2016). We provide the proof in Sections S6.3.1–S6.3.3, with
technical details deferred to Section S6.4. For the reader’s convenience we first give a brief
description of the necessary steps.

Part (ii) of Theorem S6.1 can be proved along the lines of classical results from Brillinger
(1975), but uniformly with respect to the arguments τ1 and τ2. Parts (i) and (iii) require
additional arguments that are different from the classical theory. These additional ar-
guments are due to the fact that the estimator is a stochastic process and stochastic
equicontinuity of(

Ĥj1,j2
n (a;ω)

)
a∈[0,1]2

:=
√
nbn
(
Ĝj1,j2n,U (ω; τ1, τ2)− EĜj1,j2n,U (ω; τ1, τ2)

)
τ1,τ2∈[0,1]

(S.23)

for all j1, j2 = 1, . . . , d has to be proven to ensure that the convergence holds not only
pointwise, but also uniformly. The key to the proof of (i) and (iii) is a uniform bound
on the increments Ĥj1,j2

n (a;ω)− Ĥj1,j2
n (b;ω) of the process Ĥj1,j2

n . This bound is needed
to show the stochastic equicontinuity of the process. To employ a restricted chaining
technique (cf. Lemma S6.3), we require two different bounds. First, we prove a general
bound, uniform in a and b, on the moments of the increments Ĥj1,j2

n (a;ω)− Ĥj1,j2
n (b;ω)

(cf. Lemma S6.4). Second, we prove a sharper bound on the increments Ĥj1,j2
n (a;ω) −

Ĥj1,j2
n (b;ω) when a and b are “sufficiently close” (cf. Lemma S6.10).
Condition (S.28) which we will required for Lemma S6.4 to hold is rather general.

In Lemma S6.6 we prove that condition (S.13), which is implied by Assumption ??,
implies (S.28).

S6.3.1. Proof of Theorem S6.1(i) It is sufficient to prove the following two claims:

(i1) convergence of the finite-dimensional distributions of the process (S.23), that is,(
Ĥj1`,j2`
n

(
(a1`, a2`);ωj

))
j=1,...,k

d−→
(
Hj1`,j2`

(
(a1`, a2`);ωj

))
j=1,...,k

(S.24)

for any (j1`, j2`, a1`, a2`, ω`) ∈ {1, . . . , d} × [0, 1]2 × R, ` = 1, . . . , k and k ∈ N;
(i2) stochastic equicontinuity: for any x > 0, any ω ∈ R, and any j1, j2 = 1, . . . , d,

lim
δ↓0

lim sup
n→∞

P
(

sup
a,b∈[0,1]2

‖a−b‖1≤δ

|Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)| > x
)

= 0. (S.25)
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By (S.25) we have stochastic equicontinuity of all real parts <Ĥj1,j2
n (·;ω) and imaginary

parts =Ĥj1,j2
n (·;ω). Therefore, in view of Theorems 1.5.4 and 1.5.7 in van der Vaart and

Wellner (1996), we will have proven part (i).
First we prove (i1). For fixed τ1, τ2, Ĝj1,j2n,U (ω; τ1, τ2) is the traditional smoothed peri-

odogram estimator of the cross-spectrum of the clipped processes (I{Fj1(Xt,j1) ≤ τ1})t∈Z
and (I{Fj2(Xt,j2) ≤ τ2})t∈Z [see Chapter 7.1 in Brillinger (1975)]. Thus, (S.24) follows
from Theorem 7.4.4 in Brillinger (1975), by which these estimators are asymptotically
jointly Gaussian. The first and second moment structures of the limit are given by The-
orem 7.4.1 and Corollary 7.4.3 in Brillinger (1975). The joint convergence (S.24) follows.
Note that condition (S.13), which is implied by Assumption ??, implies the summability
condition [i. e., Assumption 2.6.2(`) in Brillinger (1975), for every `] required for the three
theorems in Brillinger (1975) to be applied.

Now to the proof of (i2). The Orlicz norm ‖X‖Ψ = inf{C > 0 : EΨ(|X|/C) ≤ 1} with
Ψ(x) := x6 coincides with the L6 norm ‖X‖6 = (E|X|6)1/6. Therefore, for any κ > 0
and sufficiently small ‖a− b‖1, we have by Lemma S6.4 and Lemma S6.6 that

‖Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)‖Ψ ≤ K
(‖a− b‖κ1

(nbn)2
+
‖a− b‖2κ1
nbn

+ ‖a− b‖3κ1
)1/6

.

Consequently, for all a, b with ‖a − b‖1 sufficiently small and ‖a − b‖1 ≥ (nbn)−1/γ and
all γ ∈ (0, 1) such that γ < κ,

‖Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)‖Ψ ≤ K̄‖a− b‖γ/21 .

Note that ‖a− b‖1 ≥ (nbn)−1/γ if and only if d(a, b) := ‖a− b‖γ/21 ≥ (nbn)−1/2 =: η̄n/2.
The packing number (van der Vaart and Wellner, 1996, p. 98)D(ε, d) of ([0, 1]2, d) satisfies
D(ε, d) � ε−4/γ . By Lemma S6.3, we therefore have, for all x, δ > 0 and η ≥ η̄n,

P
(

sup
‖a−b‖1≤δ2/γ

|Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)| > x
)

= P
(

sup
d(a,b)≤δ

|Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)| > x
)

≤

[
8K̃

x

(∫ η

η̄n/2

ε−2/(3γ)dε+ (δ + 2η̄n)η−4/(3γ)

)]6

+ P
(

sup
d(a,b)≤η̄n

|Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)| > x/4
)
.

Now, choosing 2/3 < γ < 1 and letting n tend to infinity, the second term tends to
zero by Lemma S6.10, because, by construction, 1/γ > 1 and d(a, b) ≤ η̄n if and only if
‖a− b‖1 ≤ 22/γ(nbn)−1/γ . All together, this yields

lim
δ↓0

lim sup
n→∞

P
(

sup
d(a,b)≤δ

|Ĥn(a;ω)− Ĥn(b;ω)| > x
)
≤

[
8K̃

x

∫ η

0

ε−2/(3γ)dε

]6

,

for every x, η > 0. The claim then follows, as the integral on the right-hand side may be
arbitrarily small by choosing η accordingly. 2

S6.3.2. Proof of Theorem S6.1(ii) Following the arguments which were applied in Sec-
tion 8.1 of Kley et al. (2016) we can derive asymptotic expansions for E[Ij1,j2n,U (ω; τ1, τ2)]
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and E[Ĝj1,j2n,U (ω; τ1, τ2)]. In fact, it is easy to see that the proofs can still be applied when
the Laplace cumulants

cum
(
I{Xk1 ≤ x1}, I{Xk2 ≤ x2}, . . . , I{X0 ≤ xp}

)
which were considered in Kley et al. (2016) are replaced by their multivariate counterparts

cum
(
I{Xk1,j1 ≤ x1}, I{Xk2,j2 ≤ x2}, . . . , I{X0,jp ≤ xp}

)
.

More precisely, we now state Lemma S6.1 and S6.2 (without proof) that are multivari-
ate counterparts to Lemmas 8.4 and 8.5 in Kley et al. (2016), for which we assume

Assumption S6.1. Let p ≥ 2, δ > 0. There exists a non-increasing function ap : N →
R+ such that

∑
k∈N k

δap(k) <∞ and

sup
x1,...,xp

| cum
(
I{Xk1,j1 ≤ x1}, I{Xk2,j2 ≤ x2}, . . . , I{X0,jp ≤ xp}

)
| ≤ ap

(
max
j
|kj |
)
,

for all j1, . . . , jp = 1, . . . , d.

Note that Assumption S6.1 follows from condition (S.13), which is in turn implied by
Assumption ??, but that it is in fact somewhat weaker. We now state the first of the two
lemmas. It is a generalisation of Theorem 5.2.2 in Brillinger (1975).

Lemma S6.1. Under Assumption S6.1 with K = 2, δ > 3,

EIj1,j2n,U (ω; τ1, τ2) =

fj1,j2(ω; τ1, τ2) + 1
2πn

[
sin(nω/2)
sin(ω/2)

]2
τ1τ2 + ετ1,τ2n (ω) ω 6= 0 mod 2π

fj1,j2(ω; τ1, τ2) + n
2π τ1τ2 + ετ1,τ2n (ω) ω = 0 mod 2π

(S.26)
with supτ1,τ2∈[0,1],ω∈R |ετ1,τ2n (ω)| = O(1/n).

The second of the two lemmas is a generalisation of Theorem 5.6.1 in Brillinger (1975).

Lemma S6.2. Assume that Assumption S6.1, with p = 2 and δ > k + 1, and Assump-
tion ?? hold. Then, with the notation of Theorem S4.1,

sup
τ1,τ2∈[0,1],ω∈R

∣∣∣EĜj1,j2n (ω; τ1, τ2)− fj1,j2(ω; τ1, τ2)−
{
B(k)
n (ω; τ1, τ2)

}
j1,j2

∣∣∣
= O((nbn)−1) + o(bkn).

Because condition (S.13), which is implied by Assumption ??, implies Assumption S6.1,
Lemma S6.2 implies Theorem S6.1(ii). 2

S6.3.3. Proof of Theorem S6.1(iii) Using (S.20) and argument similar to the ones in
the proof of Lemma S6.10 it follows that

sup
ω∈R

sup
τ1,τ2∈[0,1]

|Ĝj1,j2n,R (ω; τ1, τ2)− Ĝj1,j2n,U (ω; F̂−1
n,j1

(τ1), F̂−1
n,j2

(τ2))| = op(1).

It therefore suffices to bound the differences

sup
τ1,τ2∈[0,1]

|Ĝj1,j2n,U (ω; τ1, τ2)− Ĝj1,j2n,U (ω; F̂−1
n,j1

(τ1), F̂−1
n,j2

(τ2))|
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for j1, j2 = 1, . . . , d, pointwise and uniformly in ω.
We first prove the statement for fixed ω ∈ R in full details and will later sketch the

additional arguments needed for the proof of the uniform result. For any x > 0 and
sequence δn we have,

Pn(ω) :=

P
(

sup
τ1,τ2∈[0,1]

|Ĝj1,j2n,U (ω; F̂−1
n,j1

(τ1), F̂−1
n,j2

(τ2))− Ĝj1,j2n,U (ω; τ1, τ2)| > x((nbn)−1/2 + bkn)
)

≤ P
(

sup
τ1,τ2∈[0,1]

sup
‖(u,v)−(τ1,τ2)‖∞

≤supi=1,2;τ∈[0,1] |F̂
−1
n,ji

(τ)−τ |

|Ĝj1,j2n,U (ω;u, v)− Ĝj1,j2n,U (ω; τ1, τ2)|

> x((nbn)−1/2 + bkn)
)

≤ P
(

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|Ĝj1,j2n,U (ω;u, v)− Ĝj1,j2n,U (ω; τ1, τ2)| > x((nbn)−1/2 + bkn),

sup
i=1,2;τ∈[0,1]

|F̂−1
n,ji

(τ)− τ | ≤ δn
)

+

2∑
i=1

P
(

sup
τ∈[0,1]

|F̂−1
n,ji

(τ)− τ | > δn

)
= Pn1 + Pn2 , say.

We choose δn such that n−1/2 � δn = o(n−1/2b
−1/2
n (log n)−D), where D denotes the

constant from Lemma S6.5. It then follows from Lemma S6.8 that Pn2 is o(1). For Pn1 ,
on the other hand, we have the following bound:

P
(

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|Ĥj1,j2
n,U (ω;u, v)− Ĥj1,j2

n,U (ω; τ1, τ2)| > (1 + (nbn)1/2bkn)x/2
)

+ I
{

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|EĜj1,j2n,U (ω;u, v)− EĜj1,j2n,U (ω; τ1, τ2)| > ((nbn)−1/2 + bkn)x/2
}
.

The first term tends to zero because of (S.25). The indicator vanishes for n large enough,
because we have

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|EĜj1,j2n,U (ω;u, v)− EĜj1,j2n,U (ω; τ1, τ2)|

≤ sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|EĜj1,j2n,U (ω;u, v)− fj1,j2(ω;u, v)−
{
B(k)
n (ω;u, v)

}
j1,j2
|

+ sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|
{
B(k)
n (ω; τ1, τ2)

}
j1,j2

+ fj1,j2(ω; τ1, τ2)− EĜj1,j2n,U (ω; τ1, τ2)|

+ sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|fj1,j2(ω;u, v) +
{
B(k)
n (ω;u, v)

}
j1,j2

− fj1,j2(ω; τ1, τ2)−
{
B(k)
n (ω; τ1, τ2)

}
j1,j2
|

=o(n−1/2b−1/2
n + bkn) +O(δn(1 + | log δn|)D),

where D is still the constant from Lemma S6.5. To bound the first two terms we have
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applied part (ii) of Theorem S6.1 and Lemma S6.5 for the third one. Thus, for any
fixed ω, we have shown Pn(ω) = o(1), which is the pointwise version of the claim.

Next, we outline the proof of the uniform (with respect to ω) convergence. For any yn >
0, by similar arguments as above, using the same δn, we have

P
(

sup
ω∈R

sup
τ1,τ2∈[0,1]

|Ĝj1,j2n,R (ω; τ1, τ2)− Ĝj1,j2n,U (ω; τ1, τ2)| > yn

)
≤ P

(
sup
ω∈R

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|Ĥj1,j2
n,U (ω;u, v)− Ĥj1,j2

n,U (ω; τ1, τ2)| > (nbn)1/2yn/2
)

+ I
{

sup
ω∈R

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|EĜj1,j2n,U (ω;u, v)− EĜj1,j2n,U (ω; τ1, τ2)| > yn/2
}

+ o(1).

The indicator in the latter expression is o(1) by the same arguments as above [note that
Lemma S6.5 and the statement of part (ii) both hold uniformly with respect to ω ∈ R].
For the bound of the probability, note that by Lemma S6.9,

sup
τ1,τ2

sup
k=1,...,n

|Ij1,j2n,U (2πk/n; τ1, τ2)| = Op(n
2/K), for any K > 0.

Moreover, by the uniform Lipschitz continuity ofW the functionWn is also uniformly Lip-
schitz continuous with constant of order O(b−2

n ). Combining those facts with Lemma S6.5
and the assumptions on bn, we obtain

sup
ω1,ω2∈R

|ω1−ω2|≤n−3

sup
τ1,τ2∈[0,1]

|Ĥj1,j2
n,U (ω1; τ1, τ2)− Ĥj1,j2

n,U (ω2; τ1, τ2)| = op(1).

By the periodicity of Ĥj1,j2
n,U (with respect to ω), it suffices to show that

max
ω=0,2πn−3,...,2π

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|Ĥj1,j2
n,U (ω;u, v)− Ĥj1,j2

n,U (ω; τ1, τ2)| = op(1).

By Lemmas S6.3 and S6.10 there exists a random variable S(ω) such that

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|Ĥj1,j2
n,U (ω;u, v)− Ĥj1,j2

n,U (ω; τ1, τ2)| ≤ |S(ω)|+Rn(ω),

for any fixed ω ∈ R, with supω∈R |Rn(ω)| = op(1) and

max
ω=0,2πn−3...,2π

E[|S2L(ω)|] ≤ K2L
L

(∫ η

0

ε−4/(2Lγ)dε+ (δγ/2n + 2(nbn)−1/2)η−8/(2Lγ)

)2L

for any 0 < γ < 1, L ∈ N, 0 < η < δn, and a constant KL depending on L only. For
appropriately chosen L and γ, this latter bound is o(n−3). Note that the maximum is
with respect to a set of cardinality O(n3), which completes the proof of part (iii). 2

S6.4. Auxiliary Lemmas

In this section we state multivariate versions of the auxiliary lemmas from Section 7.4
in Kley et al. (2016). Note that Lemma S6.3 is unaltered and therefore stated without
proof. The remaining lemmas are adapted to the multivariate quantities and proofs or
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directions on how to adapt the proofs in Kley et al. (2016) are collected in the end of
this section.

For the statement of Lemma S6.3, we define the Orlicz norm [see e.g. van der Vaart
and Wellner (1996), Chapter 2.2] of a real-valued random variable Z as

‖Z‖Ψ = inf
{
C > 0 : EΨ

(
|Z|/C

)
≤ 1
}
,

where Ψ : R+ → R+ may be any non-decreasing, convex function with Ψ(0) = 0.
For the statement of Lemmas S6.4, S6.6, and S6.9 we define, for any Borel set A,

djn(ω;A) :=

n−1∑
t=0

I{Xt,j ∈ A}e−itω. (S.27)

Lemma S6.3. Let {Gt : t ∈ T} be a separable stochastic process with ‖Gs − Gt‖Ψ ≤
Cd(s, t) for all s, t with d(s, t) ≥ η̄/2 ≥ 0. Denote by D(ε, d) the packing number of the
metric space (T, d). Then, for any δ > 0, η ≥ η̄, there exists a random variable S1 and a
constant K <∞ such that

sup
d(s,t)≤δ

|Gs −Gt| ≤ S1 + 2 sup
d(s,t)≤η̄,t∈T̃

|Gs −Gt| and

‖S1‖Ψ ≤K
[ ∫ η

η̄/2

Ψ−1
(
D(ε, d)

)
dε+ (δ + 2η̄)Ψ−1

(
D2(η, d)

)]
,

where the set T̃ contains at most D(η̄, d) points. In particular, by Markov’s inequality
[cf. van der Vaart and Wellner (1996), p. 96],

P
(
|S1| > x

)
≤
(

Ψ
(
x
[
8K
( ∫ η

η̄/2

Ψ−1
(
D(ε, d)

)
dε + (δ + 2η̄)Ψ−1

(
D2(η, d)

))]−1
))−1

.

for any x > 0.

Lemma S6.4. Let X0, ...,Xn−1, where Xt = (Xt,1, . . . , Xt,d), be the finite realisation of
a strictly stationary process with X0,j ∼ U [0, 1], j = 1, . . . , d. Let Assumption ?? hold.

For x = (x1, x2) let Ĥj1,j2
n (x;ω) :=

√
nbn(Ĝj1,j2n (x1, x2;ω) − E[Ĝj1,j2n (x1, x2;ω)]). Let

djn(ω;A) be defined as in (S.27). Assume that, for p = 1, . . . , P , there exist a constant C
and a function g : R+ → R+, both independent of ω1, ..., ωp ∈ R, n and A1, ..., Ap, such
that ∣∣∣ cum(dj1n (ω1;A1), . . . , djpn (ωp;Ap))

∣∣∣ ≤ C(∣∣∣∆n

( p∑
i=1

ωi

)∣∣∣+ 1
)
g(ε) (S.28)

for any indices j1, . . . , jp ∈ {1, . . . , d} and intervals A1, . . . , Ap with mink P(X0,jk ∈
Ak) ≤ ε. Then, there exists a constant K (depending on C,L, g only) such that

sup
ω∈R

sup
‖a−b‖1≤ε

E|Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)|2L ≤ K
L−1∑
`=0

gL−`(ε)

(nbn)`

for all ε with g(ε) < 1 and all L = 1, . . . , P .

Lemma S6.5. Under the assumptions of Theorem S4.1, the derivative

(τ1, τ2) 7→ dk

dωk
fj1,j2(ω; τ1, τ2)
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exists and satisfies, for any k ∈ N0 and some constants C, d that are independent of
a = (a1, a2), b = (b1, b2), but may depend on k,

sup
ω∈R

∣∣∣ dk

dωk
fj1,j2(ω; a1, a2)− dk

dωk
fj1,j2(ω; b1, b2)

∣∣∣ ≤ C‖a− b‖1(1 + | log ‖a− b‖1|)D.

Lemma S6.6. Let the strictly stationary process (Xt)t∈Z satisfy condition (S.13). Let
djn(ω;A) be defined as in (S.27). Let A1, . . . , Ap ⊂ [0, 1] be intervals, and let

ε := min
k=1,...,p

P(X0,jk ∈ Ak).

Then, for any p-tuple ω1, ..., ωp ∈ R and j1, . . . , jp ∈ {1, . . . , d},∣∣∣ cum(dj1n (ω1;A1), . . . , djpn (ωp;Ap))
∣∣∣ ≤ C(∣∣∣∆n

( p∑
i=1

ωi

)∣∣∣+ 1
)
ε(| log ε|+ 1)D,

where ∆n(λ) :=
∑n−1
t=0 e

itλ and the constants C,D depend only on K, p, and ρ [with ρ
from condition (S.13)].

Lemma S6.7. Let the strictly stationary process (Xt)t∈Z satisfy condition (S.13) and
X0,j ∼ U [0, 1]. Denote the empirical distribution function of X0,j , ..., Xn−1,j by F̂n,j.
Then, for any k ∈ N, there exists a constant dk depending only on k, such that

sup
x,y∈[0,1],|x−y|≤δn

√
n|F̂n,j(x)− F̂n,j(y)− (x− y)|

= Op

(
(n2δn + n)1/2k(δn| log δn|dk + n−1)1/2

)
,

as δn → 0.

Lemma S6.8. Let X0, ...,Xn−1, where Xt = (Xt,1, . . . , Xt,d), be the finite realisation of
a strictly stationary process satisfying condition (S.13) and X0,j ∼ U [0, 1], j = 1, . . . , d.
Then,

sup
j=1,...,d

sup
τ∈[0,1]

|F̂−1
n,j (τ)− τ | = Op(n

−1/2).

Lemma S6.9. Let the strictly stationary process (Xt)t∈Z satisfy condition (S.13) and
X0,j ∼ U [0, 1]. Let djn(ω;A) be defined as in (S.27). Then, for any k ∈ N,

sup
j=1,...,d

sup
ω∈Fn

sup
y∈[0,1]

|djn(ω; [0, y])| = Op(n
1/2+1/k).

Lemma S6.10. Under the assumptions of Theorem S6.1, let δn be a sequence of non-
negative real numbers. Assume that there exists γ ∈ (0, 1), such that δn = O((nbn)−1/γ).
Then,

sup
j1,j2,∈{1,...,d}

sup
ω∈R

sup
u,v∈[0,1]2

‖u−v‖1≤δn

|Ĥj1,j2
n (u;ω)− Ĥj1,j2

n (v;ω)| = op(1).

Proof of Lemma S6.3. The lemma is stated unaltered as in Kley et al. (2016). The
proof can be found in Section 8.3.1 of the Online Appendix of Kley et al. (2016).
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Proof of Lemma S6.4. Along the same lines of the proof of the univariate version
(Section 8.3.2 in Kley et al. (2016)) we can proof

E|Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)|2L =
∑

{ν1,...,νR}
|νj |≥2, j=1,...,R

R∏
r=1

Da,b(νr) (S.29)

with the summation running over all partitions {ν1, . . . , νR} of {1, . . . , 2L} such that
each set νj contains at least two elements, and

Da,b(ξ) :=
∑

`ξ1 ,...,`ξq∈{1,2}

n−3q/2bq/2n

( ∏
m∈ξ

σ`m

)

×
n−1∑

sξ1 ,...,sξq=1

( ∏
m∈ξ

Wn(ω − 2πsm/n)
)

cum(D`m,(−1)m−1sm : m ∈ ξ),

for any set ξ := {ξ1, . . . , ξq} ⊂ {1, . . . , 2L}, q := |ξ|, and

D`,s := dj1n (2πs/n;M1(`))dj2n (−2πs/n;M2(`)), ` = 1, 2, s = 1, . . . , n− 1,

with the sets M1(1), M2(2), M2(1), M1(2) and the signs σ` ∈ {−1, 1} defined as

σ1 := 2I{a1 > b1} − 1, σ2 := 2I{a2 > b2} − 1,

M1(1) := (a1 ∧ b1, a1 ∨ b1], M2(2) := (a2 ∧ b2, a2 ∨ b2], (S.30)

M2(1) :=

{
[0, a2] b2 ≥ a2

[0, b2] a2 > b2,
M1(2) :=

{
[0, b1] b2 ≥ a2

[0, a1] a2 > b2.

Employing assumption (S.28), we can further prove, by following the arguments of the
univariate version, that

sup
ξ⊂{1,...,2L}
|ξ|=q

sup
‖a−b‖1≤ε

|Da,b(ξ)| ≤ C(nbn)1−q/2g(ε), 2 ≤ q ≤ 2L.

The lemma then follows, by observing that

∣∣∣ R∏
r=1

Da,b(νr)
∣∣∣ ≤ CgR(ε)(nbn)R−L

for any partition in (S.29) [note that
∑R
r=1 |νr| = 2L]. 2

Proof of Lemma S6.5. Note that

cum(I{X0,j1 ≤ qj1(a1)}, I{Xk,j2 ≤ qj2(a2)})
− cum(I{X0,j1 ≤ qj1(b1)}, I{Xk,j2 ≤ qj2(b2)})

= σ1 cum(I{Fj1(X0,j1) ∈M1(1)}, I{Fj2(Xk,j2) ∈M2(1)})
+ σ2 cum(I{Fj1(X0,j1) ∈M1(2)}, I{Fj2(Xk,j2) ∈M2(2)}),

with the sets M1(1), M2(2), M2(1), M1(2) and the signs σ` ∈ {−1, 1} defined in (S.30).
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From the fact that λ(Mj(j)) ≤ ‖a− b‖1 for j = 1, 2, we conclude that∣∣∣ d`

dω`
fj1,j2(ω; a1, a2)− d`

dω`
fj1,j2(ω; b1, b2)

∣∣∣
≤
∑
k∈Z
|k|`| cum(I{Fj1(X0,j1) ∈M1(1)}, I{Fj2(Xk,j2) ∈M2(1)})|

+
∑
k∈Z
|k|`| cum(I{Fj1(X0,j1) ∈M1(2)}, I{Fj2(Xk,j2) ∈M2(2)})|

≤ 4

∞∑
k=0

k`
(

(Kρ`) ∧ ‖a− b‖1
)
.

The assertion then follows by after some algebraic manipulations. 2

Proof of Lemma S6.6. Similar to (8.27) in Kley et al. (2016) we have, by the definition
of cumulants and strict stationarity,

cum(dj1n (ω1;A1), . . . , djpn (ωp;Ap))

=

n∑
u2,...,up=−n

cum(I{X0,j1 ∈ A1}, I{Xu2,j2 ∈ A2} . . . , I{Xup,jp ∈ Ap}) exp
(
−i

p∑
j=2

ωjuj

)

×
n−1∑
t1=0

exp
(
− it1

p∑
j=1

ωj

)
I{0≤t1+u2<n} · · · I{0≤t1+up<n}. (S.31)

By Lemma 8.1 in Kley et al. (2016),

∣∣∣∆n(

p∑
j=1

ωj)−
n−1∑
t1=0

exp
(
− it1

p∑
j=1

ωj

)
I{0 ≤ t1 + u2 < n} · · · I{0 ≤ t1 + up < n}

∣∣∣
≤ 2

p∑
j=2

|uj |. (S.32)

Following the arguments for the proof of (8.29) in Kley et al. (2016), we further have, for
any p + 1 intervals A0, . . . , Ap ⊂ R, any indices j0, . . . , jp ∈ {1, . . . , d}, and any p-tuple
κ := (κ1, ..., κp) ∈ Rp+, p ≥ 2, that

∞∑
k1,...,kp=−∞

(
1+

p∑
`=1

|k`|κ`
)∣∣ cum

(
I{Xk1,j1 ∈ A1}, . . . , I{Xkp,jp ∈ Ap}, I{X0,j0 ∈ A0}

)∣∣
≤ Cε(| log ε|+ 1)d. (S.33)

To this end, define k0 = 0, consider the set

Tm :=
{

(k1, ..., kp) ∈ Zp| max
i,j=0,...,p

|ki − kj | = m
}
,

and note that |Tm| ≤ cpmp−1 for some constant cp. From the definition of cumulants and
some simple algebra we get the bound

| cum(I{Xt1,j1 ∈ A1}, ..., I{Xtp,jp ∈ Ap})| ≤ C min
i=1,...,p

P (X0,ji ∈ Ai).

With this bound and condition (S.13), which is implied by Assumption ??, we obtain,
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employing the above notation, that

∞∑
k1,...,kp=−∞

(
1 +

p∑
j=1

|k`|κ`
)∣∣ cum

(
I{Xk1,j1 ∈ A1}, . . . , I{Xkp,jp ∈ Ap}, I{X0,j0∈A0}

)∣∣
=

∞∑
m=0

∑
(k1,...,kp)∈Tm

(
1+

p∑
`=1

|k`|κ`
)∣∣ cum

(
I{Xk1,j1 ∈ A1}, . . . , I{Xkp,jp ∈ Ap}, I{X0,j0 ∈ A0}

)∣∣
≤
∞∑
m=0

∑
(k1,...,kp)∈Tm

(
1 + pmmaxj κj

)(
ρm ∧ ε

)
Kp ≤ Cp

∞∑
m=0

(
ρm ∧ ε

)
|Tm|mmaxj κj .

For ε ≥ ρ, (S.33) then follows trivially. For ε < ρ, set mε := log ε/ log ρ and note that
ρm ≤ ε if and only if m ≥ mε. Thus,
∞∑
m=0

(
ρm ∧ ε

)
mu ≤

∑
m≤mε

muε+
∑
m>mε

muρm ≤ C
(
εmu+1

ε + ρmε
∞∑
m=0

(m+mε)
uρm

)
.

The fact that ρmε = ε completes the proof of the desired inequality (S.33). The assertion
follows from (S.31), (S.32), (S.33) and the triangle inequality. 2

Proofs of Lemmas S6.7, S6.8 and S6.9. Note that the component processes (Xt,j)
are stationary and fulfill Assumption (C) in Kley et al. (2016), for every j = 1, . . . , d.
The assertion then follow from the univariate versions (i. e., Lemma 8.6, 7.5 and 7.6 in
Kley et al. (2016), respectively), as the dimension d does not depend on n. 2

Proof of Lemma S6.10. Assume, without loss of generality, that n−1 = o(δn) [oth-
erwise, enlarge the supremum by considering δ̃n := max(n−1, δn)]. With the notation
a = (a1, a2) and b = (b1, b2), we have

Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω) = b1/2n n−1/2
n−1∑
s=1

Wn(ω − 2πs/n)(Ks,n(u, v)− EKs,n(u, v))

where, with djn,U defined in (S.22),

Ks,n(a, b) := n−1
(
dj1n,U (2πs/n;u1)dj2n,U (−2πs/n;u2)− dj1n,U (2πs/n; v1)dj2n,U (−2πs/n; v2)

)
= dj1n,U (2πs/n;u1)n−1

[
dj2n,U (−2πs/n;u2)− dj2n,U (−2πs/n; v2)

]
+ dj2n,U (−2πs/n; v2)n−1

[
dj1n,U (2πs/n;u1)− dj1n,U (2πs/n; v1)

]
.

By Lemma S6.9, we have, for any k ∈ N,

sup
y∈[0,1]

sup
ω∈Fn

|djn,U (ω; y)| = Op

(
n1/2+1/k

)
. (S.34)

Employing Lemma S6.7, we have, for any ` ∈ N and j = 1, . . . , d,

sup
ω∈R

sup
y∈[0,1]

sup
x:|x−y|≤δn

n−1|djn,U (ω;x)− djn,U (ω; y)|

≤ sup
y∈[0,1]

sup
x:|x−y|≤δn

n−1
n−1∑
t=0

|I{Fj(Xt,j) ≤ x} − I{Fj(Xt,j) ≤ y}|

≤ sup
y∈[0,1]

sup
x:|x−y|≤δn

|F̂n,j(x ∨ y)− F̂n,j(x ∧ y)− x ∨ y + x ∧ y|+ Cδn

= Op
(
ρn(δn, `) + δn

)
,
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with ρn(δn, `) := n−1/2(n2δn+n)1/2`(δn| log δn|D` +n−1)1/2, F̂n,j denoting the empirical
distribution function of Fj(X0,j), . . . , Fj(Xn−1,j), and d` being a constant depending only
on `. Combining these arguments and observing that

sup
ω∈R

n−1∑
s=1

∣∣∣Wn(ω − 2πs/n)
∣∣∣ = O(n) (S.35)

yields

sup
ω∈R

sup
u,v∈[0,1]2

‖u−v‖1≤δn

∣∣∣ n−1∑
s=1

Wn(ω − 2πs/n)Ks,n(u, v)
∣∣∣ = Op

(
n3/2+1/k(ρ(δn, `) + δn)

)
. (S.36)

With Mi(j), i, j = 1, 2, as defined in (S.30), we have

sup
‖a−b‖1≤δn

sup
s=1,...,n−1

|EKs,n(a, b)|

≤ n−1 sup
‖a−b‖1≤δn

sup
s=1,...,n−1

∣∣ cum(dj1n,U (2πs/n;M1(1)), dj2n,U (−2πs/n;M2(1)))
∣∣

+ n−1 sup
‖a−b‖1≤δn

sup
s=1,...,n−1

∣∣ cum(dj1n,U (2πs/n;M1(2)), dj2n,U (−2πs/n;M2(2)))
∣∣

(S.37)

where we have used Edjn,U (2πs/n;M) = 0. Lemma S6.6 and λ(Mj(j)) ≤ δn, for j = 1, 2
(with λ denoting the Lebesgue measure over R) yield

sup
‖a−b‖1≤δn

sup
s=1,...,n−1

| cum(dj1n (2πs/n;M1(j)), dj2n (−2πs/n;M2(j)))|

≤ C(n+ 1)δn(1 + | log δn|)D,

It follows that the right-hand side in (S.37) is O(δn| log δn|D). Therefore, by (S.35), we
obtain

sup
ω∈R

sup
‖a−b‖1≤δn

∣∣∣b1/2n n−1/2
n−1∑
s=1

Wn(ω − 2πs/n)EKs,n(a, b)
∣∣∣ = O

(
(nbn)1/2δn| log n|D

)
.

In view of the assumption that n−1 = o(δn), we have δn = O(n1/2ρn(δn, `)), which, in
combination with (S.36), yields

sup
ω∈R

sup
‖a−b‖1≤δn

|Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)|

= Op

(
(nbn)1/2[n1/2+1/k(ρn(δn, `) + δn) + δn| log δn|D]

)
= Op

(
(nbn)1/2n1/2+1/kρn(δn, `)

)
= Op

(
(nbn)1/2n1/k+1/`(n−1 ∨ δn(log n)D`)1/2

)
= op(1).

The op(1) holds, as we have, for arbitrary k and `,

O((nbn)1/2n1/k+1/`δ1/2
n (log n)D`/2) = O((nbn)1/2−1/2γn1/k+1/`(log n)D`/2).

The assumptions on bn imply (nbn)1/2−1/2γ = o(n−κ) for some κ > 0, such that this latter
quantity is o(1) for k, ` sufficiently large. The term (nbn)1/2n1/k+1/`n−1/2 is handled in
a similar fashion. This concludes the proof. 2
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